Question 1. (a) Define the notions of sequential compactness and limit point compactness. (b) Prove that the Lebesgue covering lemma holds for a sequentially compact metric space.

Answer.

- (a) Sequentially compact: Let T = (S, τ) be a topological space and X ⊆ S. Then X is called sequentially compact in T if every infinite sequence in X has a sub-sequence which converges to a point in X.
 Limit point compact: Let T = (S, τ) be a topological space and X ⊆ S. Then X is called *limit point compact* or weakly countably compact if every infinite subset of X has a limit point in X.
- (b) Lebesgue covering lemma: If the metric space (X, d) is compact and an open cover of X is given, then there exists a number $\delta > 0$ such that every subset of X having diameter less than δ ; is contained in some member of the cover.

Now, we prove that Lebesgue covering lemma holds for a sequentially compact metric space.

Proof: Let \mathcal{U} be an open cover of X and suppose, to the contrary, that there is no such δ . Then for every $n \in \mathbb{N}$, 1/n is not a Lebesgue number, that is, there is a subset $S_n \subset X$ such that $diam(S_n) < 1/n$ but S_n is not entirely contained in any of the elements of \mathcal{U} . (In particular, S_n is not empty.) For each $n \in \mathbb{N}$, we choose one point $x_n \in S_n$. Since X is sequentially compact, there is a subsequence (x'_n) of (x_n) which converges to some point $x \in X$. Since \mathcal{U} covers X, there is a $U \in \mathcal{U}$ such that $x \in U$. Then there is an $\epsilon > 0$ such that $x \in N_X(x; \epsilon) \subset U$. Choose $N \in \mathbb{N}$ with $1/N < \epsilon/2$. Since (x'_n) converges to x, all but finitely many members of the subsequence (x'_n) must lie in $N_X(x; \epsilon/2)$. Hence, infinitely many members of the original sequence (x_n) lie in $N_X(x; \epsilon/2)$. So, there is an n > N such that $x_n \in N_X(x; \epsilon/2)$. This implies, however, that $S_n \subset N_X(x; \epsilon/2)$. For if $s \in S_n$, then $d(s; x) \le d(s; x_n) + d(x_n; x) < diam(S_n) + \epsilon/2 < 1/n + \epsilon/2 < 1/N + \epsilon/2 < \epsilon/2 + \epsilon/2 = \epsilon$. But then $S_n \subset N_X(x; \epsilon/2) \subset U$, which contradicts our assumption. Therefore, Lebesgue covering lemma holds for a sequentially compact metric space.

Question 2. (a) Define the notions of a second countable, Lindelöf and separable topological space. (b) Prove or disprove: \mathbb{R}_l (the reals with the lower limit topology) is second countable.

Answer:

(a) Second countable: Let $T = (S, \tau)$ be a topological space. The topological space T is said to be secondcountable if its topology has a countable base. More explicitly, this means that the topological space T is second countable if there exists some countable collection $\mathcal{U} = \{U_i\}_{i=1}^{\infty}$ of open subsets of T such that any open subset of T can be written as a union of elements of some subfamily of \mathcal{U} .

Lindelöf space: A topological space T is said to be a Lindelöf topological space if every open cover has a countable subcover.

Separable space: A topological space T is said to be a separable topological space if T contains a countable dense subset, i.e., there exists a sequence $\{x_n\}_{n=1}^{\infty}$ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence.

(b) Let τ be the lower-limit topology on \mathbb{R} and $T = (\mathbb{R}, \tau)$ be the topological space. We will show that T is not second countable. Let B be a base for τ . We shall show that B can not be countable. For each x in \mathbb{R} , we choose a basic open set B_x from B such that $x \in B_x \subset (x - 1, x]$. This can be done, because (x - 1, x] is an open set containing x. Now, let $x, y \in \mathbb{R}$ be such that x < y. Then $y \notin B_x$ and $y \in B_y$. So B_x is a different set from B_y for all x < y. Thus, B is uncountable

Question 3. (a) Define the notions of a normal, regular, and completely regular topological space. (b) State Urysohn's Lemma, Urysohn's Metrization Theorem and the Tietze Extension Theorem. (c) Give an example (with details) of a topological space for which Urysohn's lemma does not hold.

(a) Normal topological space: A topological space X is a normal space if, given any disjoint closed sets E and F, there are open neighborhoods U of E and V of F that are also disjoint.

Regular topological space: A topological space X is a regular space if, given any closed set F and any point x that does not belong to F, there exist a neighborhood U of x and a neighborhood V of F that are disjoint.

Completely regular topological space: A topological space X is a completely regular space if, given any closed set F and any point x that does not belong to F, there exists a continuous function $f: X \to [0, 1]$ such that f(x) = 0 and f(C) = 1.

- (b) Urysohn's Lemma: If A, B are disjoint closed sets in a normal space X, then there exists a continuous function f : X → [0,1] such that ∀a ∈ A, f(a) = 0 and ∀b ∈ B, f(b) = 1.
 Urysohn's Metrization Theorem: Every regular space X with a countable basis is metrizable.
 Tietze Extension Theorem: Let X be a normal space and A be a closed subset in X. If f : A → [a,b] is a continuous function, then f has a continuous extension f̄ : X → [a,b], i.e., f̄ is continuous and f̄|_A = f.
- (c) Let $X = \{a, b, c\}$ be a space with topology $\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$. It is easy to see that τ is a topology on X and $\{a\}, \{c\}$ are two closed sets in X. Now, we show that there is no continuous function $f : X \to [0, 1]$ such that f(a) = 0 and f(c) = 1. Let $f : X \to [0, 1]$ be a function such that f(a) = 0 and f(c) = 1.

Case 1: Let $f(b) \leq 0$. Then $f^{-1}(0, \infty) = \{c\}$. Since $\{c\} \notin \tau$, f is not continuous. Case 2: Let 0 < f(b) < 1. Then $f^{-1}(f(b), \infty) = \{c\}$. Since $\{c\} \notin \tau$, f is not continuous. Case 3: Let $f(b) \geq 1$. Then $f^{-1}(-\infty, 1) = \{a\}$. Since $\{a\} \notin \tau$, f is not continuous. Thus, Urysohn's Lemma does not hold in this topological space.

Question 4. (a) Prove or disprove: a locally compact Hausdorff space is completely regular. (b) Prove that the one point compactification of the natural numbers \mathbb{N} with the discrete topology is homeomorphic to the subspace $\{\frac{1}{n} \mid n \in \mathbb{N}\} \cup \{0\}$.

- (a) For any topological space X we have the following implications: X is locally compact Hausdorff \implies X is an open subspace of a compact Hausdorff space (by Corollary 29.4) \implies X is a subspace of a normal space (by Theorem 32.2) \implies X is a subspace of a completely regular space (by Theorem 33.1) \implies X is completely regular (by Theorem 33.2).
- (b) The one-point compactification of \mathbb{N} consists of \mathbb{N} together with a single point which we can call ∞ . The topological structure is that of the discrete topology on \mathbb{N} and the open neighbourhoods of ∞ are by definition the complements of the compact subsets of \mathbb{N} . The compact subsets of \mathbb{N} are the finite subsets, so the neighbourhoods of ∞ are the sets with finite complement.

The map $n \to 1/n$ (where $1/\infty$ is interpreted as 0) takes this space to the set $\{0\} \cup \{1/n : n \in \mathbb{N}\}$, and it is easy to check that it preserves the topology (because the points 1/n are all isolated, and the neighbourhoods of 0 are exactly the sets with finite complement). Observe that $\{0\} \cup \{1/n : n \in \mathbb{N}\}$ is a compact and Hausdorff space, therefore, it is a one-point compactification of the subspace $\{1/n : n \in \mathbb{N}\}$.

Question 5. (a) State Tychonoff's Theorem. (b) Prove that the countable product (with the product topology), $[0, 1]^w$, of the closed interval [0, 1], is sequentially compact.

- (a) **Tychonoff's Theorem:** The product of any collection of compact topological spaces is compact with respect to the product topology.
- (b) Let $X = [0,1]^w$ and τ is the product topology on X. Then $T = (X,\tau)$ is first-countable as the collection of all products $\prod_{n \in \mathbb{N}} U_n$ form a countable basis, where U_n is an open interval with rational endpoints for finitely many values of n, and $U_n = \mathbb{R}$ for all other values of n. On the other hand, by Tychonoff's Theorem, T is compact. Now, we will show that T is sequentially compact, i.e., every infinite sequence in X has a convergent subsequence.

Let $\langle x_n \rangle_{n \in \mathbb{N}}$ be an infinite sequence in X. We use a proof by contradiction. That is, suppose that $\langle x_n \rangle_{n \in \mathbb{N}}$ does not have a convergent subsequence. By Theorem 30.1, it follows that $\langle x_n \rangle_{n \in \mathbb{N}}$ does not have an accumulation point in X. Thus, for each $x \in X$, we can select an open set U_x such that $x \in U_x$ and U_x only contains x_n for finitely many $n \in \mathbb{N}$. The set $\mathcal{U} = \{U_x : x \in X\}$ is clearly an open cover for X. By the definition of a compact space, there exists a finite subcover $\{U_{x_1}, U_{x_2}, \ldots, U_{x_m}\}$ of \mathcal{U} for X. Then $U_{x_1} \cup U_{x_2} \cup \cdots \cup U_{x_m}$ contains all of X since it is a cover. However, each open set in this union only contains x_n for a finite number of n, and this is a finite union of sets. So, the union only contains x_n for finitely many n. This implies that $x_n \in X$ for only finitely many $n \in \mathbb{N}$. This is a contradiction, since $\langle x_n \rangle$ is a sequence in X, and so $x_n \in X$ for all $n \in \mathbb{N}$.